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The problem

We consider the problem

m(s) := inf
{∫

D
ϕ(∇u) : u ∈ H1

0 (D) ,

∫
D
u = s

}
,

where D ⊂ R2 is a bounded simply connected domain, s a real
parameter and

ϕ(y) :=

{ 1
2
(
1 + |y |2

)
|y | ≥ 1

|y | |y | ≤ 1

!(")

10 "

Does m(s) admit a solution u such that

|∇u| ∈ {0}∪ ] 1,+∞ [ a.e. in D ?

We call special solution such a minimizer for m(s).
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How it looks ?

Ω(u) := {∇u = 0} the plateau of u

Γ(u) := ∂Ω(u) ∩ D the free boundary of u
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Outline

1. Mechanical motivation: optimal design of thin torsion rods
. GB, Fragalà, Seppecher, Arch. Rat. Mech. Anal. (2011).
. GB, Fragalà, Lucardesi, Seppecher, SIAM J. Math. Anal.

(2012).

2. Optimality conditions, existence of a plateau and uniqueness.
3. Free boundary formulation and Cheeger sets
4. Existence results for special solutions
5. Further properties of special solutions and open problems
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1. Optimal design of thin torsion rods

Minimize the compliance of an elastic material submitted to
torsion, to be placed in a asymptotically thin design region with a
prescribed volume fraction.

!" := "# × $

%"
horizontal

shape optimization for the compliance [ Allaire, Bonnetier,
Cherkaev, Conca, Francfort, Gibiansky, Kohn, Strang, Jouve,
Tartar]

dimension reduction analysis [ Acerbi, Braides, Buttazzo,
Ciarlet, Fonseca, Le Dret, Mora, Muller, Murat, Raoult,
Percivale, Tomarelli,Trabucho,Viano]5/42



Compliance

The compliance of a linear elastic material placed in a subset
Ω ⊂ R3 submitted to an external load F ∈ H−1(Ω; R3), is the
opposite of the energy at equilibrium. We associate the shape
functional:

C (Ω) := sup
{
〈F , u〉R3 −

∫
Ω
j(e(u)) dx : u ∈ C∞(R3; R3)

}
.

Since j is a quadratic: C (Ω) = 1
2〈F , u〉, with u optimal

displacement.
j(z) = λ

2 (tr(z))2 + η|z |2
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The optimal design problem

For given load F and volume m of material, we have to solve the
shape optmisation problem

inf
{
C (Ω) : |Ω| = m , Ω ⊂ Q,

}
As usual volume constraint is handled through Lagrange multiplier.
For k > 0, we set

φ(k) := inf
{
C (Ω) + k |Ω| : Ω ⊆ Q

}
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Homogenization phenomena

Main features

φ(k) is an ill-posed problem [Murat,Tartar].
Minimizing sequences Ωn tend to become more and more
intricate fine mixture of voids and elastic material, i.e.
11Ωn → θ
Here θ(x) ∈ [0, 1] represents the local filling percentage of
minimizing microstructures.

θ(x) =


0 no material
1 full material
∈ (0, 1) fine mixture

Finding the variational problem solved by θ is challenging!
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But.... a miracle happens for the 3D-1D reduction limit!

Under suitable assumptions on exterior load F δ, it is possible to
write explicitly the limit problem as δ → 0, for

φδ(k) := inf
{
C (Ω) +

k
δ2
|Ω| : Ω ⊆ Qδ

}
as a convex well-posed problem for densities θ ∈ L∞(Ω; [0, 1]).

Question:

What can be said about optimal material distributions,
namely about solutions θ to the limit problem φ(k)?

Do we have θ with values into {0, 1} (true material),
or into [0, 1] (composite material)?
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Picture of the 3D-2D case:

For thin plates, classical solutions without homogenization regions
always exist under the form of sandwich-like structures.

Optimal shape for a plate submitted to bending forces

[G.Bouchitté, I.Fragala, P.Seppecher Arch. Rat. Mech. Anal. 2011]
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Back to 3D-1D: assumption on the load

– F is horizontal

– F has a Lebesgue negligible support

– 〈F , u〉 = 〈Σ, e(u)〉, Σ ∈ L2(Q; R3×3
sym) with Σ33 = 0

Examples: Ω = D × I , I = (0, 1)

F = (δ1 − δ0)(x3)(−∂2ψ(x ′), ∂1ψ(x ′), 0) (ψ ∈ H1
0 (D))

F = ρ(x3)τ∂D(x ′)H1 ∂D (ρ ∈ L2
m(I ))

Properties:

〈F , u〉 = 0 ∀ u ∈ BN(Q) =
{
eij(u) = 0 ∀(i , j) 6= (3, 3)

}
〈F , v〉 = 〈mF , c〉 ∀ v ∈ TW (Q) =

{(
c(x3)(−x2, x1) , v3

)}
.

mF := [[x1F2 − x2F1]] average momentum
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The asymptotic analysis δ → 0

• Small parameter problem:

Qδ = δD × I , F δ(x ′, x3) = δ−1F (δ−1x ′, x3)

φδ(k) := inf
A⊂Qδ

{
Cδ(A) + k

|A|
δ2

}
with Cδ(A) := sup

w∈H1(Qδ;R3)

{〈F δ,w〉 −
∫

A
j(e(w))}


δ → 0 infinitesimal cross-section
k = Lagrange multiplier

(k → +∞ for vanishing filling ratio) !" := "# × $

%"
horizontal
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• Reducing on fixed design Q = D × I (A ⊂ Qδ  ω ⊂ Q)

C δ(ω) := sup
{
δ−1〈F , u〉R3 −

∫
ω
j(eδ(u)) dx : u ∈ H1(Q; R3)

}
.

eδ(u) :=

[
δ−2eαβ(u) δ−1eα3(u)

δ−1eα3(u) e33(u)

]
.

As δ → 0+, optimal displacements uδ satisfy

lim
δ
uδ = u and lim

δ
δ−1〈F , uδ〉 = 〈F , v〉

for some u ∈ BN(Q) and v =
(
c(x3)(−x2, x1) , v3

)
∈ TW (Q).
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• Limit of φδk
δ → 0
+ relaxation
ωδ ⊂ Q  θ ∈ L∞(Q; [0, 1])

φ(k) = inf
{
C lim(θ) + k

∫
Q
θ : θ ∈ L∞(Q; [0, 1])

}
where

θ = local filling ratio of elastic material

C lim(θ) := sup
c,v3

{
〈mF , c〉R−κ

∫
Q

∣∣c ′(x3)(−x2, x1) +∇x ′v3
∣∣2 θ dx}

Writing φ(k) = inf
θ
sup
c,v

. . . = sup
c,v

inf
θ
. . . we eliminate θ and are

obtain (after dualizing with respect to pair (c , v)):
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• Dual problem on Q:

φ(k)

2k
= inf

L2(Q;R2)

{∫
Q
ϕ(q) : divx ′q = 0 ,

∫
D

(x1q2−x2q1) = −2MF (x3)

}
(MF (x3) :=

∫ x3
0 mF (s) ds)

• Localization on each section

The dual form can be solved for q(·, x3) section by section
The function q(·, x3) is divergence free on all R2 and if
R2 \ D is connected

∃u ∈ H1
0 (D) : q(·, x3) = (−∂2u, ∂1u)

q optimal ⇐⇒ q(·, x3) = (−∂2u, ∂1u) where u optimal for m(s)
(with s = MF (x3))
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Link with special solutions?

Let u be a solution for

m(s) := inf
{∫

D
ϕ(∇u) : u ∈ H1

0 (D) ,

∫
D
u = s

}
,

and let θ solve φ(k) ( k = m′(s))

Then it holds (up to negligible subset)

{0 < |∇u| < 1} ⊂ {0 < θ < 1} ⊂ {0 < |∇u| ≤ 1}

Special solutions for m(s) ⇐⇒ Classical solution for φ(k)

(NO HOMOGENIZATION)
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2. Existence, optimality conditions and uniqueness

m(s) := inf
{∫

D
ϕ(∇u) : u ∈ H1

0 (D) ,

∫
D
u = s

}
,

Proposition

The map s 7→ m(s) is convex even and lim
|s|→∞

m(s)

s2 = τD > 0

where (Saint-Venant torsional rigidity)

τD :=
1
2
inf
{∫

D
|∇u|2 : u ∈ H1

0 (D) ,

∫
D
u = 1

}
,

For every s ∈ R, the minimum m(s) is achieved. Moreover

If m(s) admits a special solution, then there is no other solution.
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Dual problem

The Fenchel conjugate of m reads

m∗(λ) = min
σ∈L2(D;R2)

{∫
D
ϕ∗(σ) : −divσ = λ

}
,

where ϕ∗(ξ) =
1
2
(
|ξ|2 − 1

)2
+

Proposition (optimality conditions)

Let s, λ ∈ R, u ∈ H1
0 (D), and σ ∈ L2(D; R2). There holds the

following equivalence

(i)


u solution to m(s)
σ solution to m∗(λ)
λ ∈ ∂m(s) .

⇐⇒ (ii)


∫

D
u = s

−divσ = λ
σ ∈ ∂ϕ(∇u) a.e. in D .

Remark: at every s 6= 0, m(s) is differentiable and m′(s) > 0.
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Argument for uniqueness

Take λ ∈ ∂m(s) and a particular solution σ for m∗(λ). Let

Qs := {|σ| > 1}

Then any solution u for m(s) satisfies ∇u = σ on D \ Qs .
( ∂ϕ satisfies ∂ϕ(ξ) = ξ if |ξ| > 1, and ∂ϕ(0) = B(0, 1).)
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Existence of a plateau

Proposition
For every s > 0, any solution u to m(s) is Lipschitz continuous and
the maximal set {u = max u} has positive measure

Proof: Let λ ∈ ∂m(s). Then, for every v ∈ H1
0 (D):∫

D
ϕ(∇u)− λ

∫
D
u ≤

∫
D
ϕ(∇v)− λ

∫
D
v .

Take t > 0 and v = min{u, t}. As ϕ(z) ≥ |z |, we get∫
u>t
|∇u| ≤ λ

∫
u>t

u .

By coarea and isoperimetric ineq, α(s) = |{u > s}| satisfies∫ ∞
t

√
α(s) ds ≤ C

∫ ∞
t

α(s) ds , C =
λ

2
√
π
.

Thus ∃t∗ : α(t) = 0 for t ≥ t∗ and α(t) ≥ 1
C2 for t < t∗
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Free boundary problem

In view of previous optimality conditions, looking for a special
solution amounts to find

a function u ∈ H1
0 (D) with{

u = const. in a subset Ω ⊂ D
|∇u| > 1 in D \ Ω

a vector field σ ∈ L2(D; R2) with
−divσ = λ in D
σ = ∇u in D \ Ω (⇒ −4u = λ in D \ Ω)
‖σ‖∞ ≤ 1 in Ω

( ∂ϕ satisfies ∂ϕ(ξ) = ξ if |ξ| > 1, and ∂ϕ(0) = B(0, 1).)
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Problem in u ?

We are led to a free boundary value problem: find a subset
Ω = Ω(u) ⊂ D such that

! ≡ "#$%&.

Ω(!)

(

! = 0

−△! = )

∣∇!∣ > 1 ∣∇!∣ = 1


−4u = λ , |∇u| > 1 in D \ Ω(u)
|∇u| = 1 on ∂Ω(u)
u constant on each connected component of Ω(u)

BUT needs more in order to construct a σ which fits to λ
⇒ geometrical condition on set Ω(u)
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3- Free boundary problem and Cheeger sets

Let E be a bounded domain of R2. The Cheeger constant of E is
defined as

hE := inf
A⊂E

Per(A)<+∞

|∂A|
|A| = inf

v∈BV0(E)R
E v=1

∫
E
|∇v |

A minimizer for hE is called a Cheeger set of E . It exists (sub-levels
of any vopt), but in general is not unique. However
If E is convex, then: ∃! Cheeger set CE and vopt = 1CE .

!

"!

!

"! ! = "!

! = "!

! = "!
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Cheeger constant

Proposition
The subdifferential of m at the origin is ∂m(0) = [−hD , hD ] . , i.e.

lim
s→0+

m(s)

s
= hD

Remark: the behaviour of m(s) near s = 0 is related with the limit
k → +∞ in the original torsion problem.
Proof:

m′+(0) = lim
s→0+

m(s)

s

= lim
s→0+

1
s

inf
v∈H1

0 (D)R
D v=1

∫
D
ϕ(s∇v) = inf

v∈H1
0 (D)R

D v=1

∫
D
|∇v |

where in last line we switch symbols inf and
∫
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Calibrable sets

Let E ⊂ R2 be a set with finite perimeter. We say that E is
calibrable if there exists σ ∈ L2(E ; R2) (calibration) such that

‖σ‖∞ ≤ 1 , −divσ = hE , [σ · νE ] = −1 H1 − a.e. on ∂E

Proposition
Let E ⊂ R2 be a bounded domain with finite perimeter. Then

E calibrable ⇐⇒ E is Cheeger set of itself

The proof follows from divergence Theorem and the fact that:

hE = max{λ ∈ R : ∃σ ∈ L2(E ; R2) , ‖σ‖∞ ≤ 1 , −divσ = λ} .

Remark: If E is convex, then E calibrable ⇐⇒ ‖H∂E‖∞ ≤ |∂E |
|E |
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Revisited free boundary problem

Looking for special solutions amounts to find a “plateau” Ω ⊂ D
(smooth enough) so that

Ω is calibrable

There exits a solution u ∈ H1
0 (D) to the overdetermined

problem


−4u = hΩ , |∇u| > 1 in D \ Ω

|∇u| = 1 on ∂Ω

u constant on each connected part of ∂Ω
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Vanishing volume fraction (limit plateau as s → 0)

lim
k→+∞

φ(k)√
2k

= inf
{
C lim(µ) +

1
2

∫
dµ : µ ∈M+(Q)

}
= min

σ∈M(Q;R2)

{∫
|σ| : divx ′σ = 0 ,

∫
D

(x1dσ2 − x2dσ1) = γ(x3)
}

Then ν optimal ⇐⇒ ν = (−∂2u, ∂1u), with u optimal for

min
{∫
|Du| : u ∈ BV (R2) , u = 0 in R2 \ D ,

∫
D
u = 1

}
= hD

Thus if D is convex, the optimal stress concentrates on ∂CD :

Material concentrates on the boundary of the Cheeger set of D
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Some numerical computations
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4. Existence results for special solutions

Proposition (radial case)

Let D be the ball B(0,R). For every s ∈ R there exists a special
solution u for m(s).

Proof: If s > 0, let u be defined as follows:

∣!∣

"(∣!∣)

# $

Ω

%

" ≡ !2−"2

2"

" =
!2−∣#∣2

2"

where r ∈ (0,R) is the unique solution of s = π
4r (R4 − r4).

Here Ω(u) = {|x | < r}. The dual solution σ = − x
r satisifies

|σ| ≤ 1 on Ω(u).
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Is the disk the unique domain ?

Recall: existence of a special solution is equivalent to existence of
optimal shape.

The answer is yes (among C 1 domains) for a similar variational
problem, corresponding to maximizing the torsional rigidity of
rods with a given cross-section D by mixing two linearly elastic
materials in fixed proportions. [Murat, Tartar]

But.... the answer is no (even among analytic domains) for our
problem!

Reason why: Our integrand ϕ(z) is not differentiable at z = 0
(it would be C 1 if the void is replaced by a weak material)
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Special solutions for D not a ball

Theorem
There exists a domain D (different from a ball) and a parameter
s ∈ R \ {0} such that m(s) admits a special solution u.
Moreover D and the plateau Ω(u) is convex with analytic boundary.

Sketch of proof: We need to construct a bounded analytic
domain D such that there exist

a function u ∈ H1
0 (D) with
∇u = 0 in a convex set Ω ⊂ D
|∇u| > 1 in D \ Ω∫

D
u = s , for some s ∈ R \ {0} ,

(1)

a field σ ∈ L2(D; R2) with
|σ| ≤ 1 in Ω ,
σ = ∇u in D \ Ω ,
−divσ = λ in D , for some λ ∈ R .

(2)
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Steps of the proof

• Step1
We consider Ω bounded, convex, with analytic boundary, and such
that ‖H∂Ω‖ < |∂Ω|/|Ω|.
(known fact) ⇒ Ω is Cheeger set of itself, i.e. it is calibrable.

Ω

!1
Let σ1 ∈ L2(Ω; R2) be a calibra-
tion for Ω, then
‖σ1‖∞ ≤ 1 in Ω
−divσ1 = hΩ in Ω
[σ1 · νΩ] = −1 H1 − a.e. on ∂Ω
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• Step2

∂Ω analytic
Cauchy−Kowalevskaya

=⇒ ∃ v analytic solution of{
−4v = hΩ in N
v = 1 , −vν = 1 on ∂Ω

in a neighbourhood N of ∂Ω.

Moreover there exists a curve γ ⊂ N analytic that is the boundary
of some domain D ⊃ Ω, such that

∂"

∂Ω

! 
−4v = hΩ in D \ Ω
|∇v | > 1 in D \ Ω
v = 1 , vν = −1 on ∂Ω
v = 1− ε on ∂D

for some 0 < ε < 1.
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• Step3
The functions

u(x) :=

{
ε in Ω
v − (1− ε) in D \ Ω

, σ(x) :=

{
σ1 in Ω
∇v in D \ Ω

satisfy the conditions (1) and (2).
In addition Ω is convex and D, Ω have analytic boundary.
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5. Further properties of special solutions

Property 1: If the value function m(s) is affine on some
[α, β], then no special solution exists for α < s < β.

Property 2: If m(s) is stricly convex on [α, β], then there
exists a unique solution for α < s < β.

Property 3: Let D be convex and assume that u is a special
solution with smooth connected Ω(u) such that Ω(u) ⊂⊂ D.
Then Ω(u) is convex.
(proof uses P-functions and Hopf’s Lemma)
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Property 4: Assume that D is not Cheeger set of itself, and
let sε ↘ 0. Then problem m(sε) cannot admit for every ε a
special solution uε with Ω(uε) ⊂⊂ D.

Property 5: Assume that u is a special solution with smooth
Ω(u). Then each connected component of D \Ω(u) meets the
boundary ∂D.
So cannot have with (Ω(u) in dark )

Not possible:

Ω(!)
" and

Ω(!)
"
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Open problems

Regularity of the free boundary
[Caffarelli, Petrosyan, Salazar, Shahgholian]

Non-existence of special solutions ? e.g. in case of the square
Kawohl, Stara, Wittum and more recently C. Galusinski, E.
Oudet

A possible plateau for a special solution on the square.
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Some numerics by C. Galusinski (IMATH-Toulon)

red or yellow zone θ = 1 , blue: zones θ = 0
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green: zones with homogenization , blue: zones u = cte
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Conjectures

There exits a special solution if D is a convex C 2 subset such
that ‖H∂D‖∞ ≤ |∂D|

|D| = hD .

For a larger class of domains (including convex domains),
there exists s∗ such that:
a special solution exists for m(s) for all s ≥ s∗
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